A Method of L1-Norm Principal Component Analysis for Functional Data
نویسندگان
چکیده
منابع مشابه
L1-norm Principal-Component Analysis of Complex Data
L1-norm Principal-Component Analysis (L1-PCA) of real-valued data has attracted significant research interest over the past decade. However, L1-PCA of complex-valued data remains to date unexplored despite the many possible applications (e.g., in communication systems). In this work, we establish theoretical and algorithmic foundations of L1-PCA of complex-valued data matrices. Specifically, we...
متن کاملOptimal sparse L1-norm principal-component analysis
We present an algorithm that computes exactly (optimally) the S-sparse (1≤S<D) maximum-L1-norm-projection principal component of a real-valued data matrix X ∈ RD×N that contains N samples of dimension D. For fixed sample support N , the optimal L1-sparse algorithm has linear complexity in data dimension, O (D). For fixed dimension D (thus, fixed sparsity S), the optimal L1-sparse algorithm has ...
متن کاملAn efficient algorithm for L1-norm principal component analysis
Principal component analysis (PCA) (also called Karhunen Loève transform) has been widely used for dimensionality reduction, denoising, feature selection, subspace detection and other purposes. However, traditional PCA minimizes the sum of squared errors and suffers from both outliers and large feature noises. The L1-norm based PCA (more precisely L1,1 norm) is more robust. Yet, the optimizatio...
متن کاملL1-norm Principal-Component Analysis in L2-norm-reduced-rank Data Subspaces
Standard Principal-Component Analysis (PCA) is known to be very sensitive to outliers among the processed data. On the other hand, in has been recently shown that L1-norm-based PCA (L1-PCA) exhibits sturdy resistance against outliers, while it performs similar to standard PCA when applied to nominal or smoothly corrupted data. Exact calculation of the K L1-norm Principal Components (L1-PCs) of ...
متن کاملRobust Principal Component Analysis with Non-Greedy l1-Norm Maximization
Principal Component Analysis (PCA) is one of the most important methods to handle highdimensional data. However, the high computational complexitymakes it hard to apply to the large scale data with high dimensionality, and the used 2-norm makes it sensitive to outliers. A recent work proposed principal component analysis based on 1-normmaximization, which is efficient and robust to outliers. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2020
ISSN: 2073-8994
DOI: 10.3390/sym12010182